down, and the pressure difference in the first region increases, this increase being more pronounced at the beginning of the heating process.

NOTATION

r, coordinate; t, time; T, temperature; P, pressure; ρ, density; λ, thermal conductivity; c, specific heat; a, thermal diffusivity; k, permeability; m, porosity; μ, viscosity; v, filtration rate; x, piezoconductivity; $R(t)$, moving melting surface; L_{2}, latent heat of fusion of solid phase; T_{m}, melting point; z, z_{1}, z_{2}, self-similar variables; $\beta, \gamma_{1}, \gamma_{2}$, constants; A_{1}, A_{2}, constants of integration; ξ, u, auxiliary variables; α, mean specific heat; r_{c}, borehole radius; h, layer thickness.

LITERATURE CITED

1. N. N. Verigin, "Some problems of convective heat conduction in porous media," in: Proceedings of the All-Union Scientific-Research Institute of Water Supply, Canalization, Hydrotechnical Construction and Engineering Hydrogeology [in Russian], No. 9, Moscow. (1964).
2. N. V. Cherskii and E. A. Bondarev, "Thermal method of exploiting gas-hydrate deposits," Dokl. Akad, Nauk SSSR, 203, No. 3 (1972).
3. N. N. Verigin and V. S. Golubev, "Vapor generation in underground collector beds," Dokl. Akad. Nauk SSSR, 223, No. 6 (1975).
4. E. B. Chekalyuk, Oil-Bed Thermodynamics [in Russian], Nedra, Moscow (1965).
5. A. V. Lykov, Heat and Mass Transfer [in Russian], Énergiya, Moscow (1972).
6. Yu. M. Shekhtman, "Heat-conduction problems in the structural breakdown of a material, taking into account the effect of escaping gas," Inzh. Zh., 5, No. 3 (1965).
7. K. K. Vasilevskii, "Self-similar problem of the heating of a semiinfinite body, taking account of mass loss and physicochemical changes within the material," Teplofiz. Vys. Temp., 5 , No. 14 (1967).
8. I. G. Portnov, "Problems of destruction and melting, taking stepwise density change into account," in: Heat and Mass Transfer [in Russian], Vol. 2, Minsk (1968).

SOME PROBLEMS OF HEAT- AND MASS-TRANSFER THEORY SOLVABLE
BY MEANS OF LAPLACE TRANSFORMATION
S. Ts. Koprinski

UDC 536.24 .02

The solution of a system of heat- and mass-transfer equations is obtained in Laplace transforms; formulas for finding the inverse transforms are given.

Consider the system of heat- and mass-transfer equations [1]

$$
\begin{align*}
& \frac{\partial u}{\partial t}=a_{1} \frac{\partial^{2} u}{\partial x^{2}}+k_{1} \frac{\partial^{2} v}{\partial x^{2}} \tag{1}\\
& \frac{\partial v}{\partial t}=a_{2} \frac{\partial^{2} v}{\partial x^{2}}+k_{2} \frac{\partial^{2} u}{\partial x^{2}}
\end{align*}
$$

where $a_{1}>0 ; a_{2}>0 ; k_{1}>0 ; k_{2}>0 ; a_{1} a_{2}>k_{1} k_{2}$.
It is required to find the solution of this system for which boundedness conditions are satisfied: $u(x, t)=0\left(\mathrm{e}^{\lambda_{1} x}\right), \lambda_{1}>0 ; v(x, t)=0\left(\mathrm{e}^{\lambda_{2} x}\right), \lambda_{3}>0 ;(0 \leqslant x<\infty)$.

[^0]\[

$$
\begin{equation*}
u(x, 0)=0 ; v(x, 0)=0(0 \leqslant x<\infty) \tag{2}
\end{equation*}
$$

\]

and boundary conditions of one of three forms:

$$
\begin{gather*}
\left\{\begin{array}{l}
u(0, t)=\varphi_{1}(t), \\
v(0, t)=\varphi_{2}(t),
\end{array}\right. \tag{3}\\
\frac{\partial u(0, t)}{\partial x}=\varphi_{1}(t), \\
\frac{\partial v(0, t)}{\partial x}=\varphi_{2}(t), \tag{4}\\
\left\{\begin{array}{l}
E_{1} u(0, t)+F_{1} \frac{\partial u(0, t)}{\partial x}=\varphi_{1}(t), F_{1} \neq 0, \\
E_{2} v(0, t)+F_{2} \frac{\partial v(0, t)}{\partial x}=\Phi_{2}(t), F_{2} \neq 0 .
\end{array}\right. \tag{5}
\end{gather*}
$$

Here $\Phi_{1}(t)$ and $\varphi_{s}(t)$ are polynomials of arbitrary order $(0<t<\infty)$.
Laplace transformation is now performed, and the resulting equation solved, taking account of Eq. (2) and the boundedness condition, to give

$$
\begin{aligned}
& \bar{u}(x, p)=B_{1} \mathrm{e}^{-\sigma_{1} \sqrt{\bar{p}} x}+D_{1} \mathrm{e}^{-\sigma_{2} \sqrt{\bar{p}} x}, \\
& \bar{v}(x, p)=B_{2} \mathrm{e}^{-\sigma_{1} \sqrt{p} x}+D_{2} \mathrm{e}^{-\sigma_{2} \sqrt{\bar{p}} x},
\end{aligned}
$$

where

$$
\begin{gathered}
\sigma_{1}=\sqrt{\frac{a_{1}+a_{2}+\delta}{2\left(a_{1} a_{2}-k_{1} k_{2}\right)}} ; \sigma_{2}=\sqrt{\frac{a_{1}+a_{2}-\delta}{2\left(a_{1} a_{2}-k_{1} k_{2}\right)}} \\
\delta=\sqrt{\left(\overline{\left.a_{1}+a_{2}\right)^{2}+4\left(k_{1} k_{2}-a_{1} a_{2}\right)}\right.}=\sqrt{\left(a_{1}-a_{2}\right)^{2}+4 k_{1} k_{2}} .
\end{gathered}
$$

The coefficients B_{1}, B_{2}, D_{2}, and D_{2} are expressed by the following formulas, in which either $i=1, j=2$, or $i=2, j=1$.

For boundary conditions of the form in Eq. (3)

$$
\begin{aligned}
& B_{i}=\frac{1}{\delta}\left[\frac{1}{2}\left(a_{j}-a_{i}+\delta\right) \bar{\varphi}_{i}(p)-k_{i} \bar{\varphi}_{j}(p),\right] \\
& D_{i}=\frac{1}{\delta}\left[\frac{1}{2}\left(a_{i}-a_{j}+\delta\right) \bar{\varphi}_{i}(p)+k_{i} \bar{\varphi}_{j}(p)\right] .
\end{aligned}
$$

For boundary conditions of the form in Eq. (4)

$$
\begin{aligned}
B_{i} & =\frac{1}{\sigma_{i} \delta}\left[\frac{1}{2}\left(a_{i}-a_{j}-\delta\right) \frac{\bar{\varphi}_{i}(p)}{\sqrt{p}}+k_{i} \frac{\bar{\varphi}_{j}(p)}{\sqrt{p}}\right], \\
D_{i} & =\frac{1}{\sigma_{2} \delta}\left[\frac{1}{2}\left(a_{j}-a_{i}-\delta\right) \frac{\varphi_{i}(p)}{\sqrt{p}}-k_{i} \frac{\bar{\varphi}_{j}(p)}{\sqrt{p}}\right] .
\end{aligned}
$$

For boundary conditions of the form in Eq. (5)

$$
\begin{aligned}
B_{i} & =\frac{1}{\delta F_{1} F_{2} \sigma_{1} \sigma_{2}}\left[\frac{1}{2}\left(a_{j}-a_{i}+\delta\right) \frac{E_{j}-F_{j} \sigma_{2} \sqrt{p}}{(\sqrt{p}-\alpha)(\sqrt{p}-\beta)} \bar{\varphi}_{i}(p)-k_{i} \frac{E_{i}-F_{i} \sigma_{2} V \bar{p}}{(\sqrt{p}-\alpha)(\sqrt{p}-\beta)} \bar{\varphi}_{j}(p)\right], \\
D_{i} & =\frac{1}{\delta F_{1} F_{2} \sigma_{i} \sigma_{2}}\left[\frac{1}{2}\left(a_{i}-a_{j}+\delta\right) \frac{E_{j}-F_{j} \sigma_{1} \sqrt{p}}{(\sqrt{p}-\alpha)(\sqrt{p}-\beta)} \bar{p}_{i}(p)+k_{i} \frac{E_{i}-F_{i} \sigma_{1} \sqrt{p}}{(\sqrt{p}-\alpha)(\sqrt{p}-\beta)} \bar{\varphi}_{j}(p)\right],
\end{aligned}
$$

where

$$
\begin{gathered}
\alpha=\frac{q-\sqrt{r}}{4 F_{1} F_{2} \sigma_{1} \sigma_{2}} ; \beta=\frac{q+\sqrt{r}}{4 F_{1} F_{2} \sigma_{1} \sigma_{2}} ; \\
q=\frac{1}{2}\left(E_{1} F_{2}+E_{2} F_{1}\right)\left(\sigma_{1}+\sigma_{2}\right)+\left(E_{1} F_{2}-E_{2} F_{1}\right) \frac{a_{1}-a_{2}}{2 \delta}\left(\sigma_{1}-\sigma_{2}\right) ; \\
r=\frac{1}{4}\left[E_{1} F_{2}+E_{2} F_{1}+\left(E_{1} F_{2}-E_{2} F_{1}\right) \frac{a_{1}-a_{2}}{\delta}\right]^{2} \sigma_{1}^{2}+ \\
+\frac{1}{4}\left[E_{1} F_{2}+E_{2} F_{1}+\left(E_{2} F_{1}-E_{1} F_{2}\right) \frac{a_{1}-a_{2}}{\delta}\right]^{2} \sigma_{2}^{2}+ \\
+\frac{1}{2}\left[\left(E_{1} F_{2}+E_{2} F_{1}\right)^{2}+\left(E_{1} F_{2}-E_{2} F_{1}\right)^{2} \frac{\left(a_{1}-a_{2}\right)^{2}+8 k_{1} k_{2}}{\delta^{2}}\right] \sigma_{1} \sigma_{2} .
\end{gathered}
$$

It is not difficult to show that $r>0$, so that α and β are real numbers. The expression $\left(E_{i}-F_{i} \sigma_{i} \sqrt{\bar{p}}\right) /[(\sqrt{p}-\alpha)(\sqrt{p}-\beta)]$ may be written in the form $A_{i} /(\sqrt{p}-\alpha)+B_{i} /(\sqrt{p}-\beta)$, where A_{i} and B_{i} are constants; in addition, $\bar{\varphi}_{i}(p)=\sum_{v=0}^{m_{i}} a_{i v} p^{v}, \dot{a}_{i v}$ are constants. Therefore finding the solution $u(x, t), v(x, t)$ reduces to calculating the inverse transforms of the following Laplace transforms:

1) $\bar{F}_{j}(p, k)=\exp (-k \sqrt{p}) / p^{i+1}, k \geqslant 0, j=0,1,2 \ldots$ for the conditions in Eq. (3);
2) $\bar{\Phi}_{i}(p, k)=\exp (-k \sqrt{p}) / p^{i+\frac{3}{2}} ; k \geqslant 0: i=0,1,2, \ldots$ for the conditions in Eq. (4);
3) $\bar{\Psi}_{j}(p, k, \gamma)=\exp (-k \sqrt{p}) /\left[p^{i+1}(\sqrt{p}+\gamma)\right], k \geqslant 0 ; \gamma \neq 0 ; j=0,1,2, \ldots$ for the conditions in Eq. (5).

The following operational formulas may be used to calculate $F_{j}(t, k), \Phi_{j}(t, k)$, and $\psi_{j}(t, k)$

$$
\begin{aligned}
& \bar{F}_{j}(p, k) \doteqdot F_{j}(t, k)=\frac{1}{j!} \sum_{\lambda=0}^{j}\left[(-1)^{\lambda}\binom{j}{\lambda}\left(\frac{k}{2}\right)^{2 \lambda} t^{1-\lambda} J_{\lambda}(t)\right], \\
& \bar{\Phi}_{j}(p, k) \doteqdot \Phi_{j}(t, k)=\frac{1}{j!} \sum_{\lambda=0}^{j}\left[(-1)^{\lambda}\binom{j}{\lambda}\left(\frac{k}{2}\right)^{2 \lambda+1} J_{\lambda+1}(t)\right], \\
& \bar{\Psi}_{j}(p, k, \gamma) \div \Psi_{j}(t, k, \gamma) \\
& =\frac{1}{\gamma^{2}} \sum_{i=0}^{j} \frac{1}{\gamma^{2}(j-i)}\left[\gamma F_{i}\left(t, k j-\Phi_{l-1}(t, k)\right]+\frac{1}{\gamma^{2}(j+i)} \Psi(t, k, \gamma),\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{\lambda}(t)= \frac{4^{\lambda}}{(2 \lambda-1) k^{2 \lambda-1}} t^{\lambda-1} \sqrt{\frac{t}{\pi}} \mathrm{e}^{-\frac{h^{2}}{4 t}}-\frac{2}{2 \lambda-1} J_{\lambda-1}(t) ; \\
& J_{0}(t)=\operatorname{erfc}\left(\frac{k}{2 \sqrt{t}}\right), \Psi(t, k, \gamma)= \\
&= \frac{1}{\sqrt{\pi t}} \mathrm{e}^{-\frac{k^{2}}{4 t}}-\gamma \mathrm{e}^{k \gamma+\gamma^{2 t}} \operatorname{erfc}\left(\frac{k}{2 \sqrt{t}}+\gamma \sqrt{t}\right) \\
& \Phi_{-1}(t, k)=\frac{d}{d t} \Phi_{0}(t, k)=\frac{1}{\sqrt{\pi t}} \mathrm{e}^{-\frac{k^{2}}{4 t}}
\end{aligned}
$$

LITERATURE CITED

1. A. P. Prudnikov, "Solution in integral form of mixed problem for system of two differential equations of parabolic type," Dokl. Akad. Nauk SSSR, 115, No. 5, 869-871 (1957).
2. S. Ts. Koprinski, "Algebraic method for an original treatment of a function with operators $\exp (-\mathrm{k} \sqrt{\mathrm{p}}) / \mathrm{p}^{\mathrm{j}+1}$ and $\exp (-\sqrt{\mathrm{p}}) / \mathrm{p}^{\mathrm{j}^{+3 / 2}}$ using a Laplace transform," God. VTUZ, Mat. (Sofia), 8, No. 1, 195-206 (1972).
3. S. Ts. Koprinski, "Solution of the general equation for thermoconductance for a secondor third-order polynomial boundary condition over a semi-infinite interval with the aid of a Laplace transform," God. VTUZ, Mat. (Sofia), 9, No. 1, 97-112 (1973).

[^0]: Sofia, Bulgarian People's Republic. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 5, pp. 919-921, May, 1980. Original article submitted September 20, 1977.

