down, and the pressure difference in the first region increases, this increase being more
pronounced at the beginning of the heating process.

NOTATION

r, coordinate; t, time; T, temperature; P, pressure; p, density; A, thermal conductivity;
¢, specific heat; g, thermal diffusivity; k, permeability; m, porosity; u, viscosity; v, fil-
tration rate; x , piezoconductivity; R(t), moving melting surface; L,, latent heat of fusion
of solid phase; Ty, melting point; z, z,, z3, self-similar variables; 8, vi, Yz, constants;
Ay, Az, constants of integration; &, u, auxiliary variables; o, mean specific heat; r., bore-
hole radius; h, layer thickness.
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SOME PROBLEMS OF HEAT- AND MASS-TRANSFER THEORY SOLVABLE
BY MEANS OF LAPLACE TRANSFORMATION

S. Ts. Koprinski UDC 536.24.02

The solution of a system of heat- and mass-transfer equations is obtained in Laplace
transforms; formulas for finding the inverse transforms are given,

Consider the system of heat- and mass-transfer equations [1]

;) % %
Ettl_zai axl: +hy oxz
(1)
du v 0%
— == s k »
ot =% m TR n

where ¢, >0; @, >0; £ >0; 2 >0; a0, > kik,.

It is required to find the solution of this system for which boundedness conditions are
satisfied: u(x, #)=0(eM¥), A, >0; v(x, ) =0 (e*?), X>0; (0 Cx<<oo).
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u(x, 0)=0; v(x, 0) =0 (O<x<< )
and boundary conditions of one of three forms:

{ u(0, ) = o4 (h),
v(0, #) = (1),

ou(0, ¢
._u(__)_ P q)‘ (t)'
Ox
v (0, ¢
__(—0__) =, (t)’
Ox
Ew(, )+ Fy 9i($—°~ — @), 10,
Ex(, )+ F, 33%2 = (), Fy20.

Here 9:(f) and (p’,(t) are polynomials of arbitrary order (0 < t < =),

Laplace transformation is now performed, and the resulting equation solved, taking

account of Eq. (2) and the boundedness condition, to give

E(x’ P) = B‘ e~0s Viox + D’ e—0s V;x,
;(x, p) = Bz e—0 ﬁx + DZ g—d, V?x’

where
G — at a8 G — ata,—6
! 2 (@ay— kiky) * 2 2(aa,—kky)

8 =V (ay+ an?+ 4 (kik, — a,3) = V (@, — a2+ Sksks .

(2)

(3)

(4)

(5)

The coefficients B,, Ba, D;, and D, are expressed by the following formulas, in which either

i=1, j=2,0ri=2, j=1,
For boundary conditions of the form in Eq. (3)

B, L

I

[—; @—ai+8) 71() — ki (,,),],

D,

)
—é— [—;‘ (a; —ay+ 6) @;(p) + ki9; (p) ]

For boundary conditions of the form in Eq. (4)

1 1 9:(p) 9;(p) ]
= | X (g, —a;—8 + & =,
B, od [ 2 (@i —ay ) ]f—p 3 VP

T e, 9(p)
Dg——- 026 [2 fa, a; 6) ki Vp_].

For boundary conditions of the form in Eq. (5)

_ 1 1 . EJ'—FiO'2V; oy —& Ei_FiGSK;
KR I o e A v

_ 1 i . E;—F;O’,V; — . a »
0= o [—2 @—at O g we—n P TR —e)

.
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5}(1’)] ,

Ei—FioiVp 6;@)] ,



where

o 4=Vr . ¢+Vr
4 FiFm,0, '’ 4F1F20102 ’
| .
q= ) (ErFo-+ EoFy) (64 + 03) + (EsFy — EzFi) 2 (61— 0a);
B T
r=— [E:FrP EdFy + (EsFo— EoFy) 22 ] o2 +

1 — 2
+ [E,Fz + EaFy 4 (BiFy— EiF) 2% ] ot +

1 ) — y)? 2
+_fz_ [(Ein-l- EoF 2+ (EFy— E Fy)? @ ‘az)az+8 ‘k2 ] 040%.
It is not difficult to show that r > 0, so that « and B are real numbers. Th___e expres~
sion (E; —Fio; V)V p—a)(V p—B)] may be written in the form AJ/(V p—a)+ B/ p—B)

my

where Aj and By are constants; in addition,. @(p) :2 a;sp’, a;, are constants.

v=0

There-

fore finding the solution u(x, t), v(x, t) reduces to calculating the inverse transforms of
the following Laplace transforms:

1) Fi(p, k) = exp(—k V p)ipit ,k>0,j=0,1,2.. for the conditions in Eq. (3);

3

5
2) D;(p, k)=exp(—Fk V?)/pl 2 k=0 i=0, 1,2, ... for the conditions in Eq. (4);
3) T (p, k v)=exp(— RV PP (Vp+D, E=0, v£0;, j=0, 1, 2, ... for the conditions
in Eq. (5).
The following operational formulas may be used to calculate Fj(t, k), %4 (t, k), and
lpj (t’ k)
13 af B\ o ]
=— — 1 — 1 LG,
R b=re h =53 [0 () (5) a0
1< v (] B \2ML J
— - 1,
B0 0= H= 13 = () (5) B
Yi(p, by V=Y & V)
1 <& 1
==Y ———— WF:it, =Pt &, B+ ——— Y, & V),
D G+
where

f:13

4 A—1 Ty 2 |
L) = o A t —e Y——mg D )

I, () = erfc ( ) W, & p) =

k
2Vt

14

1 ~ I >
= e — y eyt erfe — Vt)
Vnt ¢ v ( 2Vi v
d 1 %
1 (& — (L, e .
D (4 k)= T o (t, RB) = Vi
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